

Designing of Antiepileptic Ligands by Esterification and Acetylation of Dipeptides

K. K. Vishwakarma, S. K. Saraf, R. K. Uppadhyay and D. V. Kohli

Department of Pharmaceutical Sciences,
Dr. H.S. Gour Vishwavidyalaya, Sagar(M.P.) 470 003, India
(Received Augest 28, 1991)

Abstract □ Glycylglycine, alanylalanine and alanylglycine were synthesized, their free carboxylic and amino groups were converted to methyl esters of N-acetylglycylglycine, N-acetylalanylglycine and N-acetylalanylalanine.

The synthesized compounds were evaluated for antiepileptic activity, plasmaprotein binding, TD_{50} and potentiating effect of phenobarbitone sodium.

Keywords □ N-acetyl glycylglycine methyl ester, N-acetylalanylglycine methyl ester, N-acetylalanylalanine methyl ester, plasma protein binding, antiepileptic activity.

Most of the antiepileptic drugs, i.e. derivatives of barbiturates, hydantoins, contain uride structure. Kohn¹⁾ *et al.* synthesized various selectively derivatives of α -acetamido-N-benzyl- α -phenyl acetamide and evaluated in the maximal electroshock seizure (MES) and horizontal screen (tox) tests in mice. It was also reported that replacement of the α -phenyl substituent on α -acetamido-N-benzyl- α -phenyl acetamide by a relatively small electron-rich, heteroaromatic moiety led to a greater improvement in the anticonvulsant potency of the drug candidate. Ken²⁾ proposed an anticonvulsant nucleus containing the same moiety. Takashi³⁾ extracted a seizure producing substance (K-substance) during seizure condition from dog's brain and explained that the substance contained $-COO^-$, $-CH_2NH_2$, $CHNH$, $-CH_2OH$ pharmacodynamic moieties present in the anticonvulsant nucleus.

EXPERIMENTAL METHODS

Sheehan's method⁴⁾ was adapted for the preparation of glycylglycine, alanylalanine and alanylglycine.

Synthesis of dipeptides

Glycylglycine was synthesized in the following steps.

Preparation of phthalylglycine : Glycine (0.2 mol) and phthalic anhydride (0.2 mol) was heated in an oil bath at 180-185°C for 15 min. The mixture was then cooled and recrystallized from ethanol (10%), yield, 90%, mp. 191-192°C.

Preparation of phthalylglycylchloride : A suspension of phthalylglycine (0.1 mol) and phosphorous pentachloride (0.1 mol) in 200 ml benzene was heated at 60°C for 2 hr with constant stirring. The reaction mixture was cooled, concentrated under reduced pressure and the residue was recrystallized from benzene and petroleum ether, yield, 75%, mp. 81-82°C.

Preparation of glycylglycine : A solution of phthalylglycylchloride (0.02 mol) was added slowly with constant stirring to a suspension of glycine (0.02 mol) and magnesium oxide (0.03 mol) in 75 ml of water at 5°C. After stirring for an additional 10 min at room temperature, the mixture was acidified with hydrochloric acid to get a precipitate. The precipitate was filtered and recrystallized from 90% ethanol, yield, 80%, mp. 227-228°C.

Preparation of glycylglycine from phthalylglycylglycine : A suspension of phthalylglycylglycine (0.01 mol) in